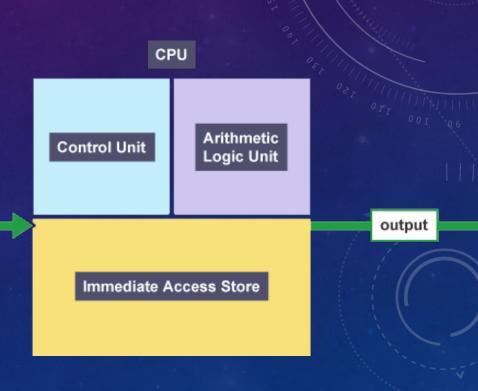


LESSON OUTCOMES

By the end of this lesson, you will be able to:

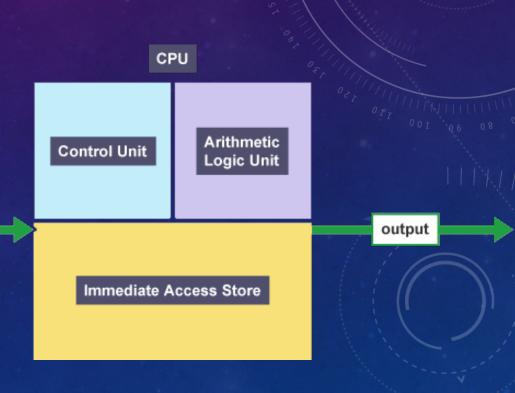

- Understand what the CPU does and how it works, including:
 - Control Unit
 - Registers (aka "immediate access store")
 - Arithmetic and Logic Unit (ALU)
- Understand what the Fetch-Execute Cycle is and how instructions are executed in computers
- Be able to write simple assembly language programs

CENTRAL PROCESSING UNIT

Made up of 3 parts:

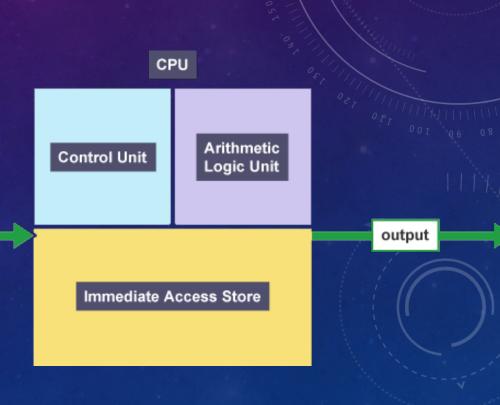
- 1. Control Unit
- Controls the flow of data within the system
- 1. Arithmetic Logic Unit (ALU)
- Where the CPU holds all the data and programs that it is currently using

- 1. Immediate Access Store (Registers)
- Where the CPU performs the arithmetic and logic operations

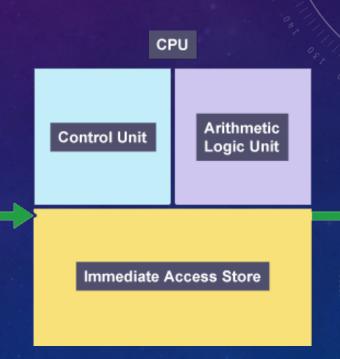

RECAP QUESTION

What are the 3 parts of the CPU?

- 1. Control Unit
- 2. Arithmetic Logic Unit (ALU)


input

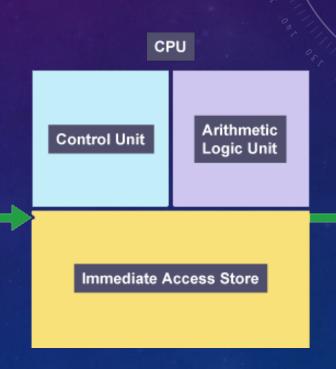
3. Immediate Access Store (Registers)


CONTROL UNIT

- Controls the flow of data within the system.
- Monitors communications between the hardware attached to the computer.
- Controls the input and output of data:
 - Checks that signals have been delivered successfully
 - Makes sure that data goes to the correct place at the correct time.

ARITHMETIC LOGIC UNIT (ALU)

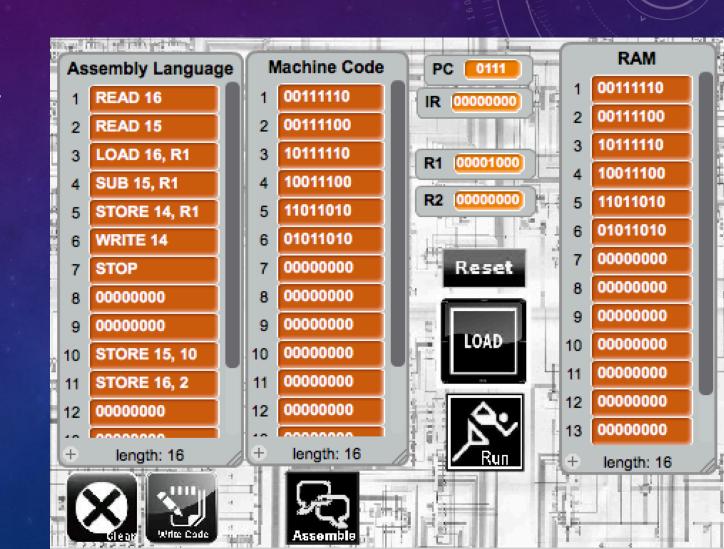
- Where the CPU performs the arithmetic and logic operations.
- Every task that your computer carries out is completed here.
- The ALU's operations fall into two parts:
 - 1. Arithmetic part, which deals with calculations, eg, 1 + 2 = 3
 - 2. Logic part, which deals with any logical comparisons, eg, 2 > 1


output

IMMEDIATE ACCESS STORE (REGISTERS)

 Where the CPU holds all the data and programs that it is currently using.

 Think of it like the numbers typed into a calculator:


 They are stored inside the calculator while it processes the calculations.

output

ASSEMBLY PROGRAMMING

- Copy AL.sb2 to your P: drive folder
- Open it with Scratch
- PC = Program Counter (which line is running)
- IR = Intermediate Representation (current instruction in binary)
- R1 = Register 1
- R2 = Register 2

TASK 1: INTRODUCING ASSEMBLY PROGRAMMING

Write an Assembly Language program that subtracts one number from another and outputs the result.

The code is shown here \rightarrow

You have 10 minutes

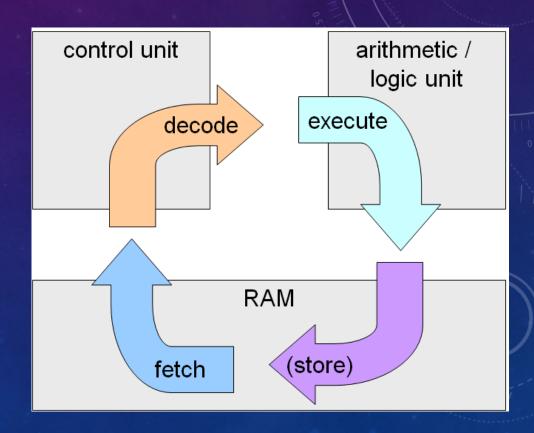
Example assembly program:

READ 16

READ 15

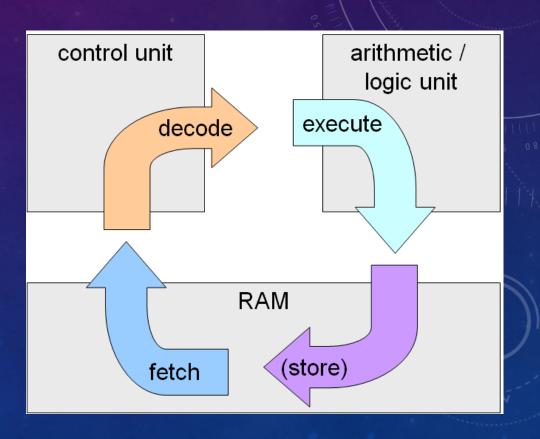
LOAD 16, R1

SUB 15, R1

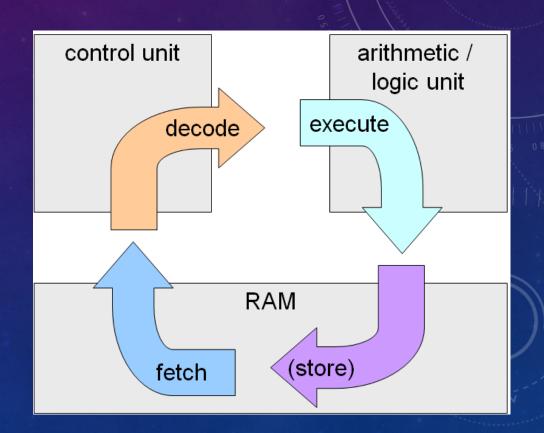

STORE 14, R1

WRITE 14

STOP


FETCH-EXECUTE CYCLE

- The basic operation of a computer is called the 'fetch-execute' cycle
- The computer fetches the instruction from its memory and then executes it
- This is done repeatedly from when the computer is booted up to when it is shut down


FETCHING THE INSTRUCTION

- The first step the fetch-execute cycle carries out is fetching the instruction
- The CPU fetches the instruction from the main memory and stores it in the CPU temporary memory, the immediate access store (registers)
- Once the instruction has been fetched, the CPU will need to understand the instruction to action it
 - This is called decoding

EXECUTING THE INSTRUCTION

- When the instruction has been decoded, the CPU can carry out the action that's needed
 - This is called executing the instruction
- The CPU is designed to understand a set of instructions - the instruction set
- A single piece of program code usually requires several instructions

EXECUTING THE INSTRUCTION

Look at this Python code:

perimeter = length + length + width + width

- 1. First, the computer loads the value of the variable **length** into the immediate access store (registers)
- 2. Next it needs to load in the value of the variable width
- 3. Then it needs to add the two numbers together (twice) executing the command in the ALU
- 4. Finally it needs to store the result in the variable perimeter

TASK 2: MORE ASSEMBLY PROGRAMMING

- Write the following code →
- Assemble
- Load
- Run
- Watch the FE Cycle in action

You have 5 minutes

```
Assembly Language
READ 16
 READ 15
 LOAD 16, R1
 LOAD 15, R2
 ADD 16, R1
 ADD 15, R1
 ADD 15, R1
 STORE 14, R1
 WRITE 14
STOP
```

Python: perimeter = length + length + width + width

ASSESSMENT TASK

Complete the Assessment sheet titled "The CPU and the Fetch-Execute Cycle"

• Put your answers, a, b or c, in the boxes

Put your name at the top

You have 5 minutes

ASSESSMENT TASK ANSWERS

1. c

6. a

2. a

7. c

3. a

8. c

4. c

9. b

5. b

10. c

LESSON SUMMARY

You should now be able to:

- Understand what the CPU does and how it works, including:
 - Control Unit
 - Registers (aka "immediate access store")
 - Arithmetic and Logic Unit (ALU)
- Understand what the Fetch-Execute Cycle is and how instructions are executed in computers
- Be able to write simple assembly language programs

NEXT WEEK

- Malware
 - Viruses
 - Trojans
 - Worms
 - Spyware
 - Adware
 - Ransomware and scareware
- Phishing scams