

Hillview International School: Year 9

Programming in Python: Advanced Functions

Lesson outcomes

By the end of this lesson, you will be able to:

- Write and use functions that take parameters
- Write and use functions that return values
- Write and use recursive functions

Functions with parameters

Allows functions to do different things depending on the parameters

```
One you use already:
print(message)
```

Defined like this:

```
def print_details(name, age):
    print("Hi there,", name)
    print("You are", age, "years-old!")
```

Parameters and arguments

Parameters are variables in the <u>function definition</u>:
 def print_name(name, age):

 Arguments are the variables passed into the <u>function call</u>: print_name("Arthur", 86)

Not unusual to see the words used interchangeably

Activity 1: User details

- The user enters their name, age and favourite colour
- The program prints a greeting including the user's name, age and favourite colour.
- Use: function with parameters to print the greeting.
- Time: you have 10 minutes!

Functions with return values

Return values allow you to get answers from functions

```
One you use already:name = input("Please enter your name > ")
```

• Used like this:

```
def get_name():
    name = input("Please enter your name")
    return name
```

Activity 2: Get user's full name

- The user enters their first name, then their last name (at separate prompts).
- The function returns the first name and last name as one string then the program prints a greeting to the user by their full name.
- Use: a function with return value to get the user's full name.
- Time: you have 10 minutes!

Recursive functions

A function that calls itself

• Used like this:

```
def my_func(x):
    if x > 0:
        my_func(x-1)
# end my_func
```

Example: Factorials (intro)

The factorial of a positive integer n, denoted by n!,
is the product of all positive integers less than or equal to n.

For example:

$$3! = 3 \times 2 \times 1 = 6$$

• What is the value of 4!

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

What is the value of 5!

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

Example: Factorials (intro)

- Alternatively, n! can be expressed as n × (n-1)!
- For example:

```
5! = 5 × 4!

4! = 4 × 3!

3! = 3 × 2!

2! = 2 × 1!

1! = 1
```

Example: Factorials

Write a program using a recursive function to calculate factorials

- Inputs: a positive integer (n)
- Outputs: the result of n!

```
def factorial(n):
    if n == 1:
        return 1
    else:
        return n * factorial(n-1)
# end factorial function

n = int(input("Choose a number to compute the factorial: "))
print(str(n)+"! =", str(factorial(n)))
```

Activity 3: Copy the factorial program

Activity 4: Finding the square number

- The user enters a positive integer
- The program prints the largest square number smaller than or equal to the number entered.
- Use: recursive functions that take parameters and return values
- Example:
 - The user enters the number 32
 - The program prints that the largest square number under 32 is 25
- Extension: also print which number is the square root of this square number
- Time: you have the rest of the lesson plus homework time

Lesson summary

You should now be able to:

- Write and use functions that take parameters
- Write and use functions that return values
- Write and use recursive functions

On Wednesday:

- Lists
 - Arrays
 - Tuples
 - Associative arrays